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第一讲 基本运算部件

第二讲 定点数运算

第三讲 浮点数运算

第6章 运算方法和运算部件



回顾：计算机系统层次结构

数字逻辑
与

计算机组成
DL&CO

RISC架构

CPU MM I/O
本章内容

前面章节内容



第一讲：基本运算部件

主 要 内 容
 高级语言程序中涉及的运算（以C语言为例）

• 整数算术运算、浮点数算术运算
• 按位、逻辑、移位、位扩展和位截断

 串行进位加法器
 并行进位加法器

• 全先行进位加法器
• 两级/多级先行进位加法器

 带标志加法器
 算术逻辑部件（ALU）



高级语言中的运算

高级语言程序中涉及的数据类型和运算

（以C语言为例）

•无符号数，带符号整数， 浮点数，位串，字符

•算术运算

•按位、逻辑、移位、位扩展和位截断、比较

如何实现高级语言源程序中的运算？



将各类表达式转换成指令序列

计算机执行指令来完成运算

0000 0010 0011 0010 0100 0000 0010 0000

control信号输入

信
息
输
入

信
息
输
出

指令+数据
int a,b=5,c=-8;  a=b+c
为变量分配寄存器

把变量按类型编码

机器数放入寄存器

按类型完成运算

运算结果放入寄存器

   Add  $t0,$s1,$s2
   0232 4020H

运算实
现逻辑

17号寄存器S1

18号寄存器S2

xx号寄存器

8号寄存器t0

……

……

a

b

c

这是MIPS汇编指令。
如果换成RISC-V呢？



回顾第12次课

典型时序逻辑部件：计数器、寄存器/通用寄存器组、移位寄存器

6

k：k位无符号二进制数，其真值对应一个寄存器编号，
且表示此寄存器堆最多只能有2k个寄存器

n：代表每个寄存器内存放n位二进制机器数（可以是
无符号数、补码、浮点数等等）

两个读口一个写口是最常用配置

ROM和RAM
存储器

0000
0001
0010
0011
…….

1100
1101
1110
1111

4位的地址

：无符号数

8位的数据：

机器数



数据的运算

指令集中涉及的运算（如RISC-V指令系统提供的运算类指令）

• 涉及的定点数运算

- 算术运算

• 带符号整数：取负 / 符号扩展 / 加 / 减 / 乘 / 除 / 算术移位

• 无符号整数：0扩展 / 加 / 减 / 乘 / 除

- 逻辑运算

• 逻辑操作：与 / 或 / 非 / …

• 移位操作：逻辑左移 / 逻辑右移

• 涉及的浮点数运算：加、减、乘、除

所有运算都可由ALU或
加法器+移位器+多路选
择器+控制逻辑实现！

以下介绍基本运算部件：加法器（串行→并行 ）→ 带标志加法器 → ALU

完全能够支持高级语
言对运算的所有需求

逻辑运算、移位、扩展和
截断等指令实现较容易，
算术运算指令实现较难！



回顾： 半加器和全加器
全加器（Full Adder，简称FA）
 输入为加数、被加数和低位进位Cin，输出为和F、进位Cout

逻辑符号

真值表

化简后：

全加器逻辑电路图



串行进位加法器

假定与/或门延迟为1，异或门为3，
则“和”与“进位”延迟为多少？

FA

全加器符号：

串行加法器的缺点：
进位按串行方式传递，速度慢！

问题：n位串行加法器从C0到Cn的延
迟时间为多少？

最后一位和数的延迟时间为多少？

2n+1级门延迟！
(n=1、2的话还是需要6级)

2n级门延迟！

Sum延迟为6；Carryout延迟为2。

0 A,B,C0
1
2 C1
3 Ai ⊕Bi
4 C2
5
6 C3 F1，F2
7 F3
8 C4
9 F4

FA FAFA

n位串行(行波)加法器：

C0Cn



串行进位加法器

假定与/或门延迟为1，异或门为3，
则“和”与“进位”延迟为多少？

FA

全加器符号：

串行加法器的缺点：
进位按串行方式传递，速度慢！

问题：n位串行加法器从C0到Cn的延
迟时间为多少？

最后一位和数的延迟时间为多少？

2n+1级门延迟！
(n=1、2的话还是需要6级)

2n级门延迟！

Sum延迟为6；Carryout延迟为2。

FA FAFA

n位串行(行波)加法器：

C0Cn

0 A,B,C0
1
2 C1
3 Ai ⊕Bi
4 C2
5
6 C3 F1，F2
7 F3
8 C4
9 F4



并行进位加法器（CLA）
为什么用先行进位方式？

串行进位加法器采用串行逐级传递进位，电路延迟与位数成正比关系。

因此，现代计算机采用一种先行进位(Carry look ahead)方式。

如何产生先行进位？

定义辅助函数：Gi=AiBi           进位生成函数

                              Pi=Ai+Bi      进位传递函数

    通常把实现上述逻辑的电路称为进位生成/传递部件

   全加逻辑方程：Fi=Ai⊕Bi⊕Ci-1   Ci=Gi+PiCi-1 (i=1,…n)
    设n=4,则：C1=G1+P1C0 

     C2=G2+P2C1=G2+P2G1+P2P1C0

                                  C3=G3+P3C2=G3+P3G2+P3P2G1+P3P2P1C0 
                       C4=G4+P4C3=G4+P4G3+P4P3G2+P4P3P2G1+P4P3P2P1C0

由上式可知:各进位之间无等待，相互独立并同时产生。

通常把实现上述逻辑的电路称为4位先行进位部件（4位CLU）



CLA加法器

Gi=XiYi                              
Pi=Xi+Yi（或 Pi=Xi⊕Yi ）
Fi=Xi⊕Yi ⊕Ci-1 

4位全先行进位加
法器CLA
（所有进位独立
并同时生成）

0: X,Y,C0
1: Pi,Gi
3: C1,2,3,4,Xi ⊕Yi
6: F1,2,3,4

4位CLU部件



局部（单级）先行进位加法器(不要求！)

Partial Carry Lookahead Adder
• 实现全先行进位加法器的成本太高

• 位数多了，逻辑方程太长，电路面积大

折中做法：

• 连接几个N位先行进位加法器，形成一个大加法器

• 例如：4个4位构成一个16位

4位先行进
位加法器

4位先行进
位加法器

4位先行进
位加法器

4位先行进
位加法器

C0C4C8C12C16

A16-13 B16-13

S16-13

A12-9 B12-9

S12-9

A8-5 B8-5

S8-5

A4-1 B4-1

S4-1

0               0                        0                0                        0              0                         0   0

0

1

3

6

579

81012

1 1 1

“组内并行

组间串行”



多级先行进位加法器

• 通过引入组进位生成/传递函数实现

“组内并行、组间并行”进位方式

设n=4,则：C1=G0+P0C0 

          C2=G1+P1C1=G1+P1G0+P1P0C0

                                           C3=G2+P2C2=G2+P2G1+P2P1G0+P2P1P0C0

      C4=G3+P3C3=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0C0 
                                                                     Gm1                                       Pm1

所以C4 =Gm1+Pm1C0。类似的C8 =Gm2+Pm2C4等。然后与上述展开方法同理

，C4,8,12,16只与C0和Pm、Gm有关。实现该逻辑的电路称为4位BCLA部件。

多级先行进位加法器 (不要求！)

在生成所有的P和G之后，需要2级门
延迟可计算出所有的Pm*和Gm*

然后还需要2级门延迟
计算出C4,8,12,16

C4 = Gm1 + Pm1 * C0
C8 = Gm2 + Pm2 * Gm1 + Pm2 * Pm1 *C0
C12 = Gm3 + Pm3 * Gm2 + Pm3 * Pm2 *Gm1 + Pm3* Pm2 * Pm1 * C0
C16 = Gm4 + Pm4 * Gm3 + Pm4 * Pm3*Gm2 + Pm4 * Pm3 * Pm2 * Gm1 + Pm4 * Pm3* Pm2 * Pm1 *C0



多级先行进位加法器 (不要求！)

4位成组先行进位部件（4位BCLA部件）

4位CLA
加法器

4位CLA
加法器

4位CLA
加法器

4位CLA
加法器

16位两级先行进位加法器

A BA BA BA B

G PS
G PS G PS G PS

最终进位

0: A,B,C0
1: Pi,Gi
3: Pmi,Gmi,C1,2,3
5: sum1,2,3,   C4,C8,C12,C16
7: C5,6,7……
10: sum其余位

C0

Pm1,Gm1Pm2,Gm2Pm3,Gm3Pm4,Gm4

C4C8C12C16



n位带标志加法器

• n位加法器无法用于两个n位带符号整数（
补码）相加，无法判断是否溢出

• 程序中经常需要比较大小，通过（在加法器
中）做减法得到的标志信息来判断

溢出标志OF：
OF=Cn⊕Cn-1

符号标志SF：
SF=Fn-1

零标志ZF=1当且仅
当F=0；
进位/借位标志CF：
CF=Cout⊕Cin

（这里是串行进位）



GPRs
0

1

2

3

ALU

PC MAR

MDR

标志寄存器

控制器

指令

数据

控制

地址

IR

存储器

0
1

2

3

14

15

OP addr

输入
设备

输出
设备

控制信号线
数据传送线

中央处理器（CPU）

现代计算机结构模型

F

A B

ALUop

CPU：中央处理器；PC：程序计数器；MAR：存储器地址寄存器

ALU：算术逻辑部件；IR：指令寄存器；MDR：存储器数据寄存器

GPRs：通用寄存器组（由若干通用寄存器组成）



算术逻辑部件（ALU）

• 有一个操作控制端（ALUop），
用来决定ALU所执行的处理功能。
ALUop的位数k决定了操作的种类
例如，当位数k为3时，ALU最多
只有23=8种操作。

• 进行基本算术运算与逻辑运算

– 无符号整数加、减

– 带符号整数加、减

– 与、或、非、异或等逻辑运算

• 核心电路是整数加/减运算部件

• 输出除和/差等，还有标志信息

ALUop   Result  ALUop   Result    ALUop    Result  ALUop   Result
 0 0 0      A加B     0 1 0      A与B       1 0 0      A取反 1 1 0        A
 0 0 1      A减B     0 1 1      A或B       1 0 1      A⊕B    1 1 1      未用

这里的唯
一结果怎
么得到？



1-bit ALU和4-bit ALU（简化示意）

1-bit ALU

A

B FA

Cout

M
ux

Cin

F

4位ALU

实际的ALU中还包括减法、算术移位、逻辑移位等其他运算功能

ALUop

2

A1

B1

A2
B2

A3
B3

A4

B4

Cin

Cout ALUop

2

F1

F2

F3

F4

串行进位

或者

先行进位



例：某ALU

ALUop



例：某ALU

ALUop



第二讲：定点数运算

主 要 内 容
 定点数加减运算

• 补码加减运算
• 原码加减运算
• 移码加减运算

 定点数乘法运算
• 原码乘法运算
• 补码乘法运算
• 快速乘法器

 定点数除法运算
• 原码除法运算
• 补码除法运算 1



n位整数加/减运算器

先看一个C程序段：
     int x=9, y=-6, z1, z2;
     z1=x+y;
     z2=x-y; 
问题：上述程序段中，x和y的机器数是什么？z1和z2的机器数是 什么？
回答：x的机器数为[x]补， y的机器数为[y]补 ;
          z1的机器数为[x+y]补 ;

z2的机器数为[x-y]补 。
因此，计算机中需要有一个电路，能够实现以下功能：
已知 [x]补 和 [y]补 ，计算[x+y]补 和 [x-y]补 。

根据补码定义，有如下公式：
[x+y]补 =2n+x+y= 2n+x+2n+y= [x]补+[y]补 (mod 2n )
[x-y]补=2n+x-y= 2n+x+2n-y= [x]补+[-y]补 (mod 2n )

补码的定义 假定补码有n位，则：
[X]补=2n +X  
（-2n-1≤X＜2n-1 ,mod 2n）

[–y]补=[y]补+1

2



n位整数加/减运算器

当Sub为1时，做减法
当Sub为0时，做加法

• 补码加减运算公式
[A+B]补 = [A]补 + [B] 补 ( mod 2n )
[A–B]补 = [A]补 + [–B] 补 ( mod 2n )
– 实现减法的主要工作在于：求 [–B]补=[B]补+1

Sum

加
法

器

4

4

4

A

ZF

Cin

Cout

4B

4

0

1

M
U

X

Sub

B
OF

整数加/减运算部件

SF

CFB＇

注意：在整数加/减运算部件基础
上，加上寄存器、移位器以及控
制逻辑，就可实现ALU、乘/除运
算以及浮点运算电路 3



强调：带符号数、无符号数的加减法运算

Sum

Adder
n

n

n

A

ZF

Cin

Cout

nB

n

0

1
M

ux

Sel

Sub

B
OF

SF
CF

• 利用带标志加法器，可构造n位整数加/减运算部件，进行以下运算：

无符号整数加、无符号整数减

带符号整数加、带符号整数减
无符号数减法也用补码减法实现，
只是结果解释(标志位使用)不同

4



整数减法举例

-7- 6 = -7 + (-6) = +3               -3 - 5 = - 3  +  (- 5)  = - 8
          9 - 6 = 9 + (-6) = 3  13 - 5 = 13  +  (- 5)  = 8

1
1+ +

0
0 0

1
1

1 1 0 0

1 1
10

1

111

0 0
0

1
0

0

0
11

11

带符号溢出判断：
(1) 最高位和次高位的进位不同 或者 (2) 和的符号位和加数的符号位不同

X √

做减法以比较大小，规则：
Signed：OF=SF时，大于

OF=0、ZF=0、
SF=1、借位CF=0

OF=1、ZF=0
SF=0、借位CF=0

√√

验证：-7<6，故OF≠SF
          -3<5，故OF≠SF

注意：Cin=sub=1

（Cout=1) （Cout=1)

OF=Cn⊕Cn-1

CF=Cout⊕Cin

Signed
unsigned

5



无符号数减法例

          9 - 6 = 3         4 - 7 =  -3

1
1+ +

0
0 0

1
1

1 1 1 0

0 1
00

1

001

0 0
0

1
0

1

0
10

00

X

做减法以比较大小，规则：
Unsigned: CF=0时，大于

OF=0、ZF=0、
SF=1、借位CF=1

OF=1、ZF=0
SF=0、借位CF=0

√

验证：9>6，故CF=0；
          13>5，故CF=0（见上页ppt）

无符号溢出判断：CF=1（减法时代表差为负数，即产生了借位）

（加法时Cin=0，所以CF=1代表产生了进位，也就是加法溢出了）

注意：Cin=sub=1

（Cout=1) （Cout=0)

OF=Cn⊕Cn-1

CF=Cout⊕Cin

验证：4< 7，故CF=1；
6



带(无)符号整数减法举例续

z1和k1的机器数一样：1001 0000，标志位也一样CF=1，OF=0，SF=1
无符号z1的真值为144(=134-246+256，x-y<0， CF=1，溢出)
带符号k1的真值为-112（=-122 – (-10) = -112， OF=0，正常）

假定 int为8位

unsigned int x=134;
unsigned int y=246;
int m=x;
int n=y;
unsigned int z1=x-y;
unsigned int z2=x+y;
int k1=m-n;
int k2=m+n;

无符号减：

带符号减：

+ 1000 0110
+ 0000 1001
+ 0000 0001
+ 1001 0000

x和m的机器数一样：1000 0110
y和n的机器数一样： 1111 0110 Cin=sub=1

Cout=0

（-122）
（-10）

7



带(无)符号整数加法举例续

unsigned int x=134;
unsigned int y=246;
int m=x;
int n=y;
unsigned int z1=x-y;
unsigned int z2=x+y;
int k1=m-n;
int k2=m+n;

z2和k2的机器数一样：0111 1100，标志位也一样 CF=1，OF=1，SF=0
z2的值为124（=134+246-256，x+y>256， CF=1，溢出）
k2的值为124（=-122+(-10)+256，m+n<-128， OF=1，负溢出）

假定 int为8位

无符号加公式：

带符号加公式：

+ 1000 0110
+ 1111 0110
1 0111 1100

Cin=sub=0
Cout=1

x和m的机器数一样：1000 0110
y和n的机器数一样： 1111 0110

（-122）
（-10）

8



例：实现部分机器指令功能的ALU

该ALU能实现哪些运算:
add,sub,addu,subu,or,slt,sltu
能否实现定点乘除运算？
能否实现浮点运算？

不能！

1(带符),
less=OF⊕ SF
0(无符), 
less=Cin⊕Cout

A | B

B / 
B取反

减法时为1

A+B / A-B

0 / 1

9



无符号数的乘法运算

 手算乘法示例:
 被乘数             1000（X）

乘数        x   1001（Y-y1y2y3y4）

1000
         0000
       0000
     1000   

 积      01001000
                         

假定：[X]原=x0.x1…xn，[Y]原=y0.y1…yn ，求[x×Y]原
数值部分 z1…z2n = (x1…xn ) × ( y1…yn) 
(小数点位置约定——“定点”，无需区分小数还是整数)

两种操作：加法 + 移位

因而，可用ALU和移位器来实现乘法运算

0.1000× 0.1001
=2-1 ( 2-1 (2-1 (2-1 (0.1000× 1) + 
1000× 0) + 1000× 0 ) + 
1000× 1)
右移后，有效数字丢失了吗？
——没有（预留存放的位置）
——整数和小数同理

10



无符号乘法运算的算法推导

上述思想可写成如下数学推导过程：

 X×Y = X × ( 0.y1 y2… yn )
            =2-1 ( 2-1 (2-1…2-1 (2-1 (0 + X× yn) + X× yn-1) +… + X× y2 ) + X× y1)
                        n个2-1

递归!  
无符号数乘法可归结为：设P0 = 0，每步的乘积为：

P1 = 2-1 (P0+ X× yn)
  P2 = 2-1 (P1+ X× yn-1)
  …… ……
  Pn = 2-1 (Pn-1+ X× y1)

 最终乘积Pn = X×Y (两个n位数相乘，得到2n位数）

迭代过程从乘数最低位yn和P0=0开始，
经n次“判断–加法–右移”循环，直到求出Pn为止。

4
X×Y= ∑ (X× yi×2-i)  
           i=1

11



Example：无符号整数乘法运算

可用一个双倍字长的乘积寄存器；
也可用两个单倍字长的寄存器。

部分积初始为0。

保留进位位。

右移时进位、部分积和剩余乘数一
起进行逻辑右移。

验证：X=14, Y=13, XY=182

需要哪些存储空间？

当乘积取低4位时，结果发生
溢出，因为高4位不为全0！

举例说明：

设X=1110 Y=1101     应用递推公式： Pi=2-1(Xyi+ Pi-1) 
  C   乘积P   乘数Y
  0  0000  1101
  +  1110  
  0  1110  1101
  0  0111  0110 1
  0  0011  1011 01
  +  1110
  1  0001  1011 01
  0  1000  1101 101
  +  1110
  1  0110  1101 101
  0  1011  0110 1101

12



写使能

控制逻辑
右移

32位 ALU

被乘数寄存器X

乘积寄存器P

32

64 位

32

32

32

加

计数器Cn

时钟

C 乘数寄存器Y

32位无符号乘法运算的硬件实现

 被乘数寄存器X：存放被乘数

 乘积寄存器P：开始置初始部分积P0 = 0；结束时，存放的是64位乘积的高32位
 乘数寄存器Y：开始时置乘数；结束时，存放的是64位乘积的低32位
 进位触发器C：保存加法器的进位信号

 循环次数计数器Cn：存放循环次数。初值32，每循环一次，Cn减1，Cn=0时结束

 ALU：乘法核心部件。在控制逻辑控制下，对P和X的内容“加”，在“写使能”
控制下运算结果被送回P，进位位在C中

每次循环都要对进位位C、乘积寄存器
P和乘数寄存器实现同步逻辑“右移”

13



原码乘法算法
 用于浮点数尾数乘运算

 符号与数值分开处理：积符异或得到，数值用无符号乘法运算

例：设[x]原=0.1110 ，[y]原=1.1101，计算 [x×y]原
解：数值部分用无符号数乘法算法计算：1110×1101= 1011 0110 

符号位：0 ⊕ 1=1，所以： [x×y]原=1. 10110110

一位乘法：每次只取乘数的一位判断，需n次循环，速度慢。

两位乘法：每次取乘数两位判断，只需n/2次循环，快一倍。

两位乘法递推公式：

00：Pi+1=2-2Pi 
01：Pi+1=2-2(Pi+X)
10：Pi+1=2-2(Pi+2X)
11：Pi+1=2-2(Pi+3X)=2-2(Pi+4X-X)
              =2-2(Pi-X)+X

yi-1   yi      T 操作（最后都要右移两位） 迭 代 公 式

0     0      0                 
 0     0      1
 0     1      0 
 0     1      1                 
 1     0      0
 1     0      1 
 1     1      0                 
 1     1      1

0 → T
+X    0 → T
+X    0 → T
+2X   0 → T
+2X   0 → T
–X    1 → T
–X    1 → T
         1 → T 

2-2  (Pi )
2-2  (Pi + X)
2-2  (Pi + X)
2-2 (Pi + 2X)
2-2 (Pi + 2X)
2-2 (Pi – X)
2-2 (Pi – X)
2-2 (Pi )

触发器T用来记录下次是否要执行“+X”
“–X”运算用“+[-X]补”实现！

3X时，本次-X，下次+X！
14



原码两位乘法举例
已知 [X]原=0.111001， [Y]原= 0.100111，用原码两位乘法计算[X×Y]原
解： 先用无符号数乘法计算111001×100111，原码两位乘法过程如下：

有加有减，所
以要算术移位

若用模4补码，
中间涉及+2X
会导致P和Y同
时右移2位时，
得到的P3是负
数，就错了。

采用补码算术
右移，与一位
乘法不同？

为什么用模8
补码形式(三
位符号位) ？

速度快，但代价也大

若最后T=1，
则要+X

15



补码乘法运算

用于对什么类型的数据计算？已知什么？求什么？

带符号整数！如C语句：int x=-5，y=-4，z=x*y;

因为[x*y]补≠ [x]补*[y]补，故不能直接用无符号整数乘法计算。

例如，若x=-5，求x*x=？： [-5]补=1011

[x*x]补： [25]补=0001 1001---正确

[x]补*[x]补；[-5]补* [-5]补=1111 1001---错误！

问题：已知[x]补和[y]补，求[x*y]补

思路：根据[y]补求y，且[A+B]补= [A]补+[B]补 ，

只要将[x*y]补转换为对若干数的和求补即可

16



补码乘法运算Booth’s Algorithm推导
假定：[x]补=xn-1xn-2…… x1x0 ， [y]补=yn-1yn-2…… y1y0 ，求：[x*y]补=？
基于补码求真值的公式：

y=-yn-1.2n-1+yn-2 .2n-2+ …… y1 .21+ y0 .20

令：y-1 =0（不失正确性)，则：

当n=4时，y=-y3.23+y2 .22+ y1 .21+ y0.20 +  y-1 .20

部分积公式：[Pi]补 = [ 2-1 ([Pi-1]补+ (yi-1-yi) · x) ]补

不失正确性——

2-4.[x*y]补=【 (y2 –y3 ) .x.2-1+(y1-y2) .x.2-2+ (y0–y1) .x.2-3 +(y-1-y0) .x.2-4】补

= 【 2-1(2-1(2-1 (2-1(y-1-y0) .x) + (y0–y1) .x) + (y1 –y2) .x) + (y2 –y3) .x) 】补

符号与数值统一处理

= -y3.23+(y2.23-y2.22) +(y1.22-y1.21) +(y0.21-y0.20)+ y-1.20 

= (y2 –y3 ).23 + (y1-y2).22 + (y0–y1).21 + (y-1-y0).20 

即：[Pi-1]补+ [±x] 补后右移一位（算术右移）

注意：这里的yi就是补
码中的某一位！

17



Booth’s 算法实质

 y当前位yi y右边位yi-1 操作 Example
 1 0 减被乘数x 0001111000
 1 1 加0 (不操作) 0001111000
 0 1 加被乘数x 0001111000
 0 0 加0 (不操作) 0001111000
在“1串”中，第一个1时做减法，最后一个1做加法，其余情况只要移位。

最初提出这种想法是因为在Booth的机器上移位操作比加法更快！

同前面算法一样，将乘积寄存器右移一位。（这里是算术右移）

0 1 1 1 1 0
beginning of runend of run

middle of run

右移只是把位置空出来，最终从n位变为2n位空间，
小数点位置依然默认是在最左边的，所以并非是把真值缩小

18



布斯算法举例

已知[X]补 = 1 101，[Y]补 = 0 110，计算[X×Y]补

验证：当X×Y取8位时，结果 -0010010B=-18；取低4位时，结果溢出

[-X]补 = 0011

1

1

1

1

X=-3，Y=6，X×Y=-18，[X×Y]补应等于11101110或结果溢出

如何判断结
果是否溢出？
高4位是否全
为符号位！

如果X是-8， 那么 [-X]补就溢出了?：除了移位实
现（快），也可以P前面加补充符号位 （慢）

19

这里即使产生进位，
也是要丢掉的（也
就是可以确保不溢
出），留下来的4
位就是正确的补码
加法的结果



补码两位乘法
补码两位乘可用布斯算法推导如下：

• [Pi+1]补 = 2-1 ( [Pi]补 + ( yi-1– yi ) [X]补) 
• [Pi+2]补 = 2-1 ( [Pi+1]补 + ( yi – yi+1) [X]补)    
              = 2-1 (2-1 ( [Pi]补 + ( yi-1– yi ) [X]补) + ( yi – yi+1) [X]补) 
              = 2-2 ( [Pi]补+ (yi-1 + yi – 2yi+1) [X]补) 

 开始置附加位y-1为0，乘积寄
存器最高位前面添加一位附加
符号位0。

 最终的乘积高位部分在乘积寄
存器P中，低位部分在乘数寄
存器Y中。

 因为字长总是8的倍数，所以
补码的位数n应该是偶数，因
此，总循环次数为n/2。

yi+1  yi     yi-1
操作(都要
右移两位) 迭 代 公 式

0    0     0                 
0    0     1
0    1     0 
0    1     1                 
1    0     0
1    0     1 
1    1     0                 
1    1     1

0
+[X]补
+[X]补
+2[X]补
+2[-X] 补
+[-X]补
+[-X]补

0

2-2[Pi]补
2-2{[Pi]补+[X]补}
2-2{[Pi]补+[X]补}
2-2{[Pi]补+2[X]补} 
2-2{[Pi]补+2[-X]补
}
2-2{[Pi]补+[-X]补}
2-2{[Pi]补+[-X]补}
2-2[Pi]补 20



补码两位乘法举例

已知 [X]补 = 1 101， [Y]补 = 0 110，用补码两位乘法计算[X×Y]补。
解：[–X]补= 0 011，用补码二位乘法计算[X×Y]补的过程如下。

Pn     P               Y       y-1              说明

0  0 0 0 0      0 1 1 0     0            开始，设y-1 = 0，[P0]补 = 0
     + 0  0 1 1 0                                    y1y0y-1 =100，+2[-X]补
        0  0 1 1 0                                    P和Y同时右移二位

        0  0 0 0 1      1 0 0 1     1            得[P2]补
     + 1  1 0 1 0                                    y3y2y1 = 011，+2[X]补
        1  1 0 1 1                                    P和Y同时右移二位

        1  1 1 1 0      1 1 1 0                   得[P4]补
因此 [X×Y]补=1110 1110 ，与一位补码乘法（布斯乘法）所得结果相

同，但循环次数减少了一半。

验证：-3×6=-18 （-10010B）

2

2

21



快速乘法器（不要求）

前面介绍的乘法部件的特点

• 通过一个ALU多次做“加/减+右移”来实现

- 一位乘法：约n次“加+右移”

- 两位乘法：约n/2次“加+右移”

所需时间随位数增多而加长，由时钟和控制电路控制

设计快速乘法部件的必要性

• 大约1/3是乘法运算

快速乘法器的实现（由特定功能的组合逻辑单元构成）

• 流水线方式

• 硬件叠加方式（如：阵列乘法器）

22



 为乘数的每位提供一个n位加法器

 每个加法器的两个输入端分别是：

• 本次乘数对应的位与被乘数相与的

结果（即：0或被乘数）

• 上次部分积

 每个加法器的输出分为两部分：

• 和的最低有效位(LSB)作为本位乘积

• 进位和高31位的和数组成一个32位数

作为本次部分积

流水线快速乘法器（不要求） 部分积0或被乘数A

进位+31位+1位

像流水一样，完全是串行，浪费
加法器资源——但是，组合逻辑
电路！无需控制器控制

23



CRA阵列乘法器（不要求）

阵列乘法器：“细胞”模块的阵列

全加器

部分积
1位输入 Ai

Bi

进位
输入

进位输出

部分积
1位输出

被乘数X

B0

0

P7 P6 P5 P4 P3 P2 P1 P0

B1

0

B2

0

B3

0

A3 A2 A1 A0
0 0 0 0

速度仅取决
于逻辑门和
加法器的传
输延迟

无符号阵列乘法器

增加符号处理电路
、乘前及乘后求补
电路，即可实现带
符号数乘法器。

手工
计算

Ai

Bi

还可采用树形结构（如华莱士树）进行部分积求和，以加快速度 24



归纳：整数的乘运算

可用无符号乘来实现带符号乘。

n位 x n位，结果机器数可获得高n位和低n位。

高n位可用来判断溢出，也可直接作为乘积的高位（肯定不溢出）。

带符号乘法器

Xs Ys

Ps

n n

n n

Psh

小写字母都是真值(下页ppt)，大写字母都是机器数

u代表unsigned，s代表signed

Puh Psh≠

Pu Ps=

不一定等于

低位高位

无符号乘法器

Xu Yu

Pu

n n

n n

Puh 低位高位 如果：
Xu=Xs

Yu=Ys

则：

补码

25



整数的乘运算（溢出判断）

 如果结果仅保留低n位， X*Y的高n位可以用来判断溢出，规则如下：
• 无符号：若高n位全0，则不溢出，否则溢出
• 带符号：若高n位全0或全1且等于低n位的最高位，则不溢出。

26



整数的乘运算（机器级语言层面）

 机器指令：分无符号数乘指令、带符号整数乘指令

 硬件可保留2n位乘积，故有些指令的乘积为2n位，可供软件使用

 乘法指令的操作数长度为n, 而乘积长度为2n，例如：

• IA-32中，若指令只给出一个操作数SRC，则另一个源操作数隐含在
累加器AL/AX/EAX中，将SRC和累加器内容相乘，结果存放在AX（
16位时）或DX-AX（32位时）或EDX-EAX（64位时）中。

• MIPS中，mult会将两个32位带符号整数相乘，得到的64位乘积置
于两个32位内部寄存器Hi和Lo中，因此，可以根据Hi寄存器中的每
一位是否等于Lo寄存器中的第一位来进行溢出判断。

• RISC-V中，用“mul rd, rs1, rs2”获得低32位乘积并存入结果寄存
器rd中；mulh、mulhu指令分别将两个乘数同时按带符号整数、同
时按无符号整数相乘后，得到的高32位乘积存入rd中

乘法指令可生成溢出标志，编译器可使用2n位乘积来判断是否溢出！

高级语言程序也可以增加防止溢出的代码。（如果都不做，可能出严重错误）
27



整数的乘运算（机器级语言层面）

 机器指令：分无符号数乘指令、带符号整数乘指令

 硬件可保留2n位乘积，故有些指令的乘积为2n位，可供软件使用

 乘法指令的操作数长度为n, 而乘积长度为2n，例如：

• IA-32中，若指令只给出一个操作数SRC，则另一个源操作数隐含在
累加器AL/AX/EAX中，将SRC和累加器内容相乘，结果存放在AX（
16位时）或DX-AX（32位时）或EDX-EAX（64位时）中。

• MIPS中，mult会将两个32位带符号整数相乘，得到的64位乘积置
于两个32位内部寄存器Hi和Lo中，因此，可以根据Hi寄存器中的每
一位是否等于Lo寄存器中的第一位来进行溢出判断。

• RISC-V中，用“mul rd, rs1, rs2”获得低32位乘积并存入结果寄存
器rd中；mulh、mulhu指令分别将两个乘数同时按带符号整数、同
时按无符号整数相乘后，得到的高32位乘积存入rd中

乘法指令可生成溢出标志，编译器可使用2n位乘积来判断是否溢出！

高级语言程序也可以增加防止溢出的代码。（如果都不做，可能出严重错误）

——乘法指令的硬件实现时就进行溢出判
断和标志生成

——编译后生成的指令序列：
指令1：mul r1, rs1, rs2
指令2：mulh r2, rs1, rs2
指令3。。。：判断r1和r2的内容情况
指令x：如果溢出就跳转。。

28



整数的乘运算（高级语言程序层面）

在计算机内部，一定有x2 ≥ 0吗?
若x是带符号整数，则不一定！
如x是浮点数，则一定！

例如，当 n=4 时, 52=-7<0 !

0101
0101
0101

0101

×

+
00011001

只取低4位，值为-111B=-7

结果
溢出

注意：这里是针对【n位与 n位相乘，结果保留n位】的情况。

int imul_overflow(int x, int y)  
{//判断是否溢出
     return x*y/y !=x
} 

多进行一次除法运算，
程序变慢！

29



思考（自学）

在字长为32位的计算机上，某C函数原型声明为：

int imul_overflow(int x, int y);

该函数用于对两个int型变量x和y的乘积（也是int类型）判断是否溢出，若

溢出则返回非0，否则返回0。请完成下列任务或回答下列问题。

（1）两个n位无符号数（带符号整数）相乘的溢出判断规则各是什么？

 无符号整数相乘：若乘积的高n位为非0，则溢出。
 带符号整数相乘：若乘积高n位的每一位都相同，且都等于乘积低n
                           位的符号，则不溢出，否则溢出。
（2）已知入口参数x、y分别在寄存器a0、a1中，返回值在a0中，写出实现

         imul_overflow函数功能的RISC-V汇编指令序列，并给出注解。（编

         译器中判断溢出的代码，学完第7章再做）

（3）使用64位整型（long long）变量来编写imul_overflow函数的C代码

         或描述实现思想。
30



思考（自学）

（2）RISC-V汇编指令序列
实现该功能的汇编指令序列不唯一。
某实现方案下的汇编指令序列如下： 
mul  t0, a0, a1        # x*y的低32位在t0中
mulh  a0, a0, a1        # x*y的高32位在a0中
srai   t0, t0, 31        # 乘积的低32位算术右移31位
xor  a0, a0, t0        # 按位异或，若结果为0，表示不溢出

31



思考（自学）

（3）采用long long型变量实现的C程序
将x*y的结果保存在long long型变量中，得到64位乘积，然后
把64位乘积强制转换为32位，再符号扩展成64位，和原来真正
的64位乘积相比，若不相等则溢出。

int imul_overflow(int x, int y)  
{
     long long prod_64= (long long) x*y;
     return prod_64 != (int) prod_64;
} 

例如：x=-4,y=6, 位数n=4
则prod_8=1110 1000
截断后为1000
重新扩展为1111 1000
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除法Divide: Paper & Pencil

1001 Quotient(商)
Divisor 1000 1001010 Dividend(被除数)

-1000
0010
0101

1010
-1000

10 Remainder (余数)
 手算除法的基本要点

（1）被除数减去除数（以除数的位数为准对齐）

够减则上商为1；不够减则上商为0。得到的差为中间余数

（2）除数右移一位，然后用中间余数减去除数或0

够减则上商1；否则上商0。得到的差仍为中间余数，

重复执行本步骤。

（3）直到求得的商的位数足够为止。

中间余数



定点除法运算

 除前预处理

①若被除数=0且除数≠0，或定点整数除法|被除数|<|除数|，则商

为0，不再继续

②若被除数≠0、除数=0，则发生“除数为0”异常

③若被除数和除数都为0，则有些机器产生一个不发信号的NaN，

即“quiet NaN”
当被除数和除数都≠ 0，且商≠ 0时，才进一步进行除法运算。

 计算机内部无符号数除法运算

• 与手算一样，通过被除数（中间余数）减除数来得到每一位商

够减上商1；不够减上商0
• 基本操作为减法（用加法实现）和移位，与乘法用同一套硬件

什么时候做？谁在做？ 软件or硬件

减法计算完之后发现不
够减怎么办？

说明这次本不该减！
要恢复余数！



定点除法运算（两个n位正数相除的情况）

(1)定点正整数（即无符号数 ）相除：在被除数的高位添n个0

(2)定点正小数（即原码小数）相除：在被除数的低位添加n个0

这样，就将所有情况都统一为：一个2n位数除以一个n位数

00001 Quotient(商)
      1000 00001010 Dividend(被除数)

      0001
          0010
                                   0101
               1010
          — 1000

      10 Remainder (余数)

中间余数

Divisor
1.0100

0.1000 0.10100000 
              1000

                   0100
                     1000
               —1000
    0 

Divisor

n位除法需 n+1步
手算中的“除数右移”改为“被除数（中间余数）左移”



第一次试商为1时的情况

问题：第一次试商为1，说明什么？

若是2n位除以n位的无符号整数运算，则说明将会得到多于n+1位的商，

因而结果“溢出”（即：无法用n位表示商）。

若是两个n位数相除，则第一位商为0，且肯定不会溢出，为什么？

最大商为: 0000 1111/0001=1111

商有n+1位数，因而溢出！

例：1111 1111/1111 = 1 0001



无符号数除法算法的硬件实现

 除数寄存器Y：存放除数。
 余数寄存器R：初始时高位部分为高32位被除数；结束时是余数。
 余数/商寄存器Q：初始时为低32位被除数；结束时是32位商。
 循环次数计数器Cn：存放循环次数。初值是32（不包括第一次试商），

每循环（移位）一次，Cn减1，当Cn=0时，除法运算结束。
ALU：除法核心部件。在控制逻辑控制下，对于寄存器R和Y的内容进行

“加/减”运算，在“写使能”控制下运算结果被送回寄存器R。

•  R和Q同步“左移”，Q空出位上“商”，
商的各位逐次左移到Q中。

• 由控制逻辑根据加减结果决定商为0还是1
• 减----试商，加----恢复余数。

不会因为加法
（其实是减法）
而产生最高进位C



无符号数除法例子

D: 0010          R: 0000 0111
Shl R  D: 0010          R: 0000 1110
R = R–D D: 0010          R: 1110 1110
+D, sl R, 0 D: 0010          R: 0001 1100
R = R–D D: 0010         R: 1111 1100
+D, sl R, 0 D: 0010          R: 0011 1000
R = R–D D: 0010          R: 0001 1000
sl R, 1               D: 0010          R: 0011 0001
R = R–D            D: 0010         R: 0001 0001
sl R, 1              D: 0010          R: 0010 0011
Shr R(rh) D: 0010          R: 0001 0011

验证：7 / 2 = 3 余 1

从例子可看出：
每次上商为0时，需做加法
以“恢复余数” 。所以，称
为“恢复余数法

+D = 0010 
–D = 1110 

最后为了上商，把余数也左
移了一位（共移了5次），
故最后余数需向右移一位

这里是两个n位无符号数
相除，肯定不会溢出，
故余数先左移而省略判
断溢出过程。

R：被除数（中间余数）;  D：除数

4位无符号数（但数值范围只能是1-
7，因为用补码实现减法，最高位需
留做符号位），最后商是4位。

整数，所以R初始在高位扩展0



不恢复余数除法(加减交替法)

根据恢复余数法(设D为除数，Ri=2Ri-1-D为第i次中间余数)，有：

 若Ri<0,则商上“0”，做加法恢复余数，即：

 Ri+1=2(Ri+D)-D=2Ri + D         (“负，左移，上商0，加”)
 若Ri>=0,则商上“1”，不需恢复余数，即：

 Ri+1=2Ri - D         (“正，左移，上商1，减”)

省去了恢复余数的过程

 注意：最后一次上商为“0”的话，需要“纠余”处理，即把试

商时被减掉的除数加回去，恢复真正的余数。

 不恢复余数法也称为加减交替法

恢复余数法可进一步简化为“加减交替法”



Divide Algorithm example

         R: 0000 0111
  R = R–D             1110 
                                                     1110  
  sl R, 0          R: 1100 1110
  R = R+D             0010 
                                                     1110
  sl R, 0            R: 1101 1100
                          R = R+D              0010 
                                                      1111
  sl R, 0           R: 1111 1000
  R = R+D              0010 
                                                      0001
  sl R, 0           R: 0011 0001
  R = R-D               1110 
                                                      0001 0011

验证：7 / 2 = 3 余 1

不恢复余数法、加减交替法
负，０，加
正，１，减

–D = 1110 

第1位商为0，表示结果不
溢出，最后（第5次）左移
出去，并加上最后一位商

且最后一次上商1，余数无
需恢复就是正确的。

第1次上商为“试商”

R：被除数（中间余数）;  D：除数

这里的最后 一步，余数保持不变，没
有和商一起左移，所以也不用右移了



带符号数除法

原码除法

o商符和商值分开处理

• 商的数值部分由无符号数除法求得

• 商符由被除数和除数的符号确定：同号为0，异号为１

o余数的符号同被除数的符号

补码除法

o方法1：同原码除法一样，先转换为正数，先用无符号数除法，

然后修正商和余数。

o方法2：直接用补码除法，符号和数值一起进行运算，商符直接

在运算中产生。

若是两个n位补码整数除法运算，则被除数进行符号扩展。

若被除数为2n位，除数为n位，则被除数无需扩展。



原码除法举例
已知 [X]原 = 0.1011 
        [Y]原 = 1.1101 
用恢复余数法计算[X/Y]原
解：[|X|]补 = 0.1011
       [|Y|]补 = 0.1101
      [–|Y|]补 = 1.0011
商的符号位：0 ⊕ 1 = 1
减法操作用补码加法实现

，是否够减通过中间余数

的符号来判断，所以中间

余数要加一位符号位。

小数在低位扩展0

思考：若实现无符号数相除，
即1011除以1101，则有何
不同？结果是什么？

被除数高位补0，1011除
以1101，结果等于0

用于
判断
是否
溢出

若求[Y/X]原
结果溢出

（小数）



原码除法举例
已知 [X]原 = 0.1011 
        [Y]原 = 1.1101 
用加减交替法计算[X/Y]原

解：[|X|]补 = 0.1011
       [|Y|]补 = 0.1101
       [–|Y|]补 = 1.0011

“加减交替法”的要点：
负、0、加
正、1、减

得到的结果与恢复余
数法一样！

用被除数（中间余数）减除数试商
时，怎样确定是否“够减”？
中间余数的符号！（正数-够减） 补码除法能否这样来判断呢？



补码除法

 补码除法判断是否“够减”的规则

（1）当被除数（或当前余数）与除数同号时，做减法，得到新余数

（2）当被除数（或当前余数）与除数异号时，做加法，得到新余数

若新余数的符号与当前余数符号一致表示够减，否则为不够减；

当前余数
R的符号

除数Y的
符号

同号：新中间余数=
R–Y（同号为正商）

异号：新中间余数=
R+Y（异号为负商）

0 1 0 1
0
0
1
1

0
1
0
1

够减

不够减

不够减

够减

够减
不够减

不够减
 够减

即：余数不变号够减、变号不够减

经过分析归纳（过程略），得到接下来的不恢复余数法



补码（n位，包括1位符号位）不恢复余数法
 算法要点：
(1)  操作数的预置：

除数装入除数寄存器Y，被除数经符号扩展后装入余数寄存器R和余数/商寄存器Q。
(2) 根据以下规则求第一位商qn

若被除数X与Y同号，则R1=X–Y；否则R1 =X+Y，并按以下规则确定商值qn：
① 若R1与Y同号，则qn置１，转下一步；
② 若R1与Y异号，则qn置0，转下一步；

      qn用来判断是否溢出，而不是真正的商。以下情况下会发生溢出：
若X与Y同号且上商qn=1，或者，若X与Y异号且上商qn = 0。

(3) 对于i =1到n+1 ，按以下规则求出qn和接下来的n位商（i=n+1时，只需置商）：
① 若Ri与Y同号，则qn+1-i置１，Ri+1 = 2Ri –[Y]补，i = i +1；
② 若Ri与Y异号，则qn+1-i置0，Ri+1 =2Ri+[Y]补，i = i +1；

(4) 商的修正：最后一次Q寄存器左移一位，将最高位qn移出，最低位置上商q0。若X与Y
同号， Q中就是真正的商；否则，将Q中商的末位加1。

(5) 余数的修正：若余数符号同X符号，则不需修正，余数在R中；否则，按下列规则进行
修正：当X和Y符号相同时，最后余数加Y；否则，最后余数减Y。

其运算过程也呈加/减交替方式，因此也称为“加减交替法”。

判断是否同号（决定加or减、上商）不是
新老余数之间！而是余数和除数Y之间

商已经是“反码”

同、1、减
异、0、加



举例：-9/2
将X=-9和Y=2分别表
示成5位补码形式为：

   [X]补 = 1 0111 
   [Y]补 = 0 0010

被除数符号扩展为：
   [X]补=11111 10111
   [–Y] 补 = 1 1110

同、1、减
异、0、加

X/Y= – 0100B = – 4
余数为 –0001B = –1
将各数代入公式:
“除数×商+余数= 被
除数”进行验证，得
2×(–4) +(–1) = –9

最后一次余数不移位



除以2k的快速处理——右移k位

无符号整数：逻辑右移，高位补0，低位丢弃

带符号整数：算术右移，高位补符，低位丢弃
举例：

unsigned  16/4=4  ：0001 0000>>2 = 0000 0100

     signed   -16/4=-4   ：1111 0000>>2 = 1111 1100

提醒：
N位被除数扩充为2N位，在高还是低位补？补0还是补符？
列竖式的时候N到底是几位（几位数值位，几位符号位）？



整数除法的近似处理（除以2k）

 不能整除时，采用朝零舍入，即截断方式

• 无符号数、带符号正整数（地板）：移出的低位直接丢弃

• 带符号负整数（天板）：加偏移量(2k-1)，然后再右移k 位 ，低位截
断（这里K 是右移位数）

举例：

无符号数 14/4=3：0000 1110>>2=0000 0011

     带符号负整数 -14/4=-3

若直接截断，则 1111 0010 >>2=1111 1100=-4（错）

     应先纠偏，再右移: k=2, 故(-14+22-1)/4=-3

     即： 1111 0010+0000 0011=1111 0101

     1111 0101>>2=1111 1101=-3



变量与常数之间的除运算—举例

 假设x为一个int型变量，请给出一个用来计算x/32的值的函数div32。要
求不能使用除法、乘法、模运算、比较运算、循环语句和条件语句，可以
使用右移、加法以及任何按位运算。

解：若x为正数，则将x右移k位得到商；若x为负数，则x需要加一个偏移量
(2k-1)后再右移k位得到商。因为32=25，所以 k=5。

即结果为: ( x>=0 ? (x + 0) : (x+31))>>5

但不能用比较和条件语句，因此要找一个计算偏移量b的方式

     这里，x为正时b=0，x为负时b=31. 因此，可以从x的符号得到b

     x>>31 得到的是32位符号，取出最低5位，就是偏移量b。

int div32(int x)
{  /* 根据x的符号得到偏移量b */
    int b=(x>>31) & 0x1F;
    return (x+b)>>5;
}  



定点运算部件

 综合考虑各类定点运算算法后，发现：

• 所有运算都可通过“加”和“移位”操作实现

 以一个或多个ALU（或加法器）为核心，加上移位器、存放中间临时结果的
寄存器组，在相应控制逻辑的控制下， 通过多路选择器和实现数据传送的总
线等，即可以实现各种运算——也就是构成了一个运算数据通路。

• 可用专门运算器芯片实现（如：4位运算器芯片AM2901）

• 可用若干芯片级联实现（如4个AM2901构成16位运算器）

• 现代计算机把运算数据通路和控制器都做在CPU中，为实现高级流水线
，CPU中有多个运算部件，通常称为“功能部件”或“执行部件”。

“运算器（Operate Unit）”、“运算部件（Operate Unit）”、
“功能部件（Function Unit）”、“执行部件（Execution Unit）”
和“数据通路（DataPath）”的含义基本上一样，只是强调的侧重不
同



I0-8

Z Y

ALU

MUX MUX

LA LB

ALU Shifter
Q Shifter

Q （乘商R）ZEROCU

控制信号

A0-3

DA0-3

B0-3

DB0-3

GRS

SIO3 SIO0

QIO0

C0

G*/N
P*/O

Cn+4

QIO3

定点运算器芯片举例-AM2901A（不要求）

通用寄存器组（General 
Register Set----GRS）



I0-8

Z Y

ALU

MUX MUX

LA LB

ALU Shifter
Q Shifter

Q （乘商R）ZEROCU

控制信号

A0-3

DA0-3

B0-3

DB0-3

GRS

SIO3 SIO0

QIO0

C0

G*/N
P*/O

Cn+4

QIO3

定点运算器芯片举例-AM2901A（不要求）

通用寄存器组（General 
Register Set----GRS）

实现同一个功能的硬件逻辑可以有很多种
就好像同样的软件功能，实现的代码可以千差万别
布线规模？布线方便程度？
是否易于增删改和复用？运行效率高低？
——最终都是一个权衡利弊、按实际需要进行取舍的过程



RISC-V中整数的乘、除运算处理

乘法指令: mul，mulh，mulhu，mulhsu
• mul rd, rs1, rs2：将低32位乘积存入结果寄存器rd
• mulh、mulhu：将两个乘数同时按带符号整数（mulh）、同时按

无符号整数（mulhu）相乘，高32位乘积存入rd中
• mulhsu：将两个乘数分别作为带符号整数和无符号整数相乘后得

到的高32位乘积存入rd中
• 得到64位乘积需要两条连续的指令，其中一定有一条是mul指令，

实际执行时只有一条指令

• 两种乘法指令都不检测溢出, 而是直接把结果写入结果寄存器。由

软件根据结果寄存器的值自行判断和处理溢出

除法指令: div ，divu，rem，remu
• div / rem：按带符号整数做除法，得到商 / 余数

• divu / remu：按无符号整数做除法，得到商 / 余数

ISA要素：
指令+数据
类型+寄存
器设计等



第二讲小结

逻辑运算、移位运算、扩展运算等电路简单
主要考虑算术运算
 定点运算涉及的对象

无符号数；带符号整数(补码)；原码小数；移码整数
 定点运算：(ALU实现基本算术和逻辑运算，ALU+移位器

实现其他运算)
补码加/减：符号位和数值位一起运算，减法用加法实

现。同号相加时可能溢出
原码加/减：符号位和数值位分开运算，用于浮点数尾

数加/减运算 （等到浮点数运算时介绍）
移码加减：移码的和、差等于和、差的补码，用于浮点

数阶码加/减运算（等到浮点数运算时介绍）



第二讲小结

乘法运算：
无符号数乘法：“加”+“右移”
原码（一位/两位）乘法：符号和数值分开运算，数值部分用无符号数乘法实

现，用于浮点数尾数乘法运算。
补码（一位/两位）乘法：符号和数值一起运算，采用Booth算法。
快速乘法器：流水化乘法器、阵列乘法器

除法运算：
无符号数除法：用“加/减”+“左移” ，有恢复余数和不恢复余数两种。
原码除法：符号和数值分开，数值部分用无符号数除法实现，用于浮点数尾数

除法运算。
补码除法：符号位和数值位一起。有恢复余数和不恢复余数两种。

 定点运算部件

 作业：习题3、4、5、6、7、11（4）（11月2号晚上24:00之前交）



第三讲：浮点数运算

主 要 内 容

 指令集中与浮点运算相关的指令

• 涉及到的操作数

- 单精度浮点数

- 双精度浮点数

• 涉及到的运算

- 算术运算： 加 / 减 / 乘 / 除

 浮点数加减运算

 浮点数乘除运算

 浮点数运算的精度问题



有关Floating-point number的问题

° 编码表示：

 Normalized form (规格化形式) 和 Denormalized form
 单精度格式 和 双精度格式

 ° 表数范围和精度

 ° 算术运算(+, -, *, / )
 °舍入 (Rounding)
 °异常处理： (Exceptions，如除数为0，上溢，下溢等)
 °误差与精度控制

 

实现一套浮点数运算指令，要解决的问题有：



回顾:单精度浮点数的表示

2-125 2-124 2-123

1.0…0x2-126~ 1.1…1x2-126

0.0…1x2-126~ 0.1…1x2-126

2-125 2-124 2-1230

GAP

规格化数

非规格化数

(-1)S x (1 + M) x 2(E-127)

更小则
正下溢

1.0x2-126-23

2-126



浮点数运算及结果

设两个规格化浮点数分别为 A=Ma . 2Ea     B=Mb.2Eb  ,则：

A+B =(Ma + Mb.2-(Ea-Eb)). 2Ea      (假设Ea>=Eb )

A*B =(Ma * Mb).2Ea+Eb

A/B =(Ma / Mb).2Ea-Eb

上述运算结果可能出现以下几种情况：

阶码上溢：一个正指数超过了最大允许值 =〉+∞/-∞/溢出

阶码下溢：一个负指数比最小允许值还小 =〉+0/-0

尾数溢出：最高有效位有进位 =〉右规

非规格化尾数：数值部分高位为0 =〉左规

右规或对阶时，右段有效位丢失 =〉尾数舍入

SP最大指数为多少？ 127

SP最小指数呢？
-126-23

运算过程中添加保护位
（附加位）

尾数溢出，结
果不一定溢出

1.01+1.10=10.11

1.10-1.01=0.01



IEEE754标准规定的五种异常情况

① 无效运算（无意义）

• 运算时有一个数是非有限数，如：

加 / 减∞、0 x ∞、 ∞/∞等

• 结果无效，如：

源操作数是NaN、0/0、x REM 0、 ∞ REM y 等

② 除以0（即：无穷大）

③ 数太大（阶码上溢）: 对于SP，阶码 E >1111 1110 (指数大于127)

④ 数太小（阶码下溢）: 对于SP，阶码 E < 0000 0001(指数小于-126-23)

⑤ 结果不精确（舍入时引起），例如1/3，1/10等不能精确表示成浮点数

上述情况硬件可以捕捉到，因此这些异常可设定让硬件处理（硬件陷阱），也
可设定让软件处理（调用特定的异常处理程序）。



浮点数加/减运算
十进制科学计数法的加法例子

 0.123 × 105 + 0. 560 ×102

其计算过程为：

0.123 ×105 + 0.560 ×102 = 0.123 ×105 + 0.000560 ×105       
                                           =(0.123 + 0.00056) ×105 = 0.12356 ×105  

               =0.124 ×105 

“对阶”操作：目的是使两数阶码相等

•小阶向大阶看齐，阶小的那个数的尾数右移，右移位数等于两个

阶码差的绝对值 （保证不会在对阶时溢出，但可能丢失数据位）

• IEEE 754尾数右移时，要将隐含的“1”移到小数部分，高位补0
，移出的低位保留到特定的“附加位”上

（1）进行尾数加减运算前，必须“对阶”！
（2）最后还要考虑舍入
计算机内部的二进制运算也一样



浮点数加/减运算-对阶

问题：IEEE754 SP格式的偏置常数是127，这会不会影响阶码运算电路的
复杂度？ 对计算[Ex–Ey]补 （mod 2n） 没有影响

[∆E]补= 256+Ex–Ey=256+127+Ex– (127+Ey)
          = 256 + [Ex]移 – [Ey]移 = [Ex]移+[–[Ey]移]补 (mod 256)

通过计算[∆E]补来判断两数的阶差：
[∆E]补= [Ex–Ey]补= [Ex]移 + [–[Ey]移]补 (mod 2n)

问题：在∆E为何值时无法根据[∆E]补来判断阶差？

问题：如何对阶？

溢出时！

例：4位移码，Ex=7，Ey=-7，则[∆E]补=1111+1111=1110，∆E<0,错

但[Ex+Ey]移和 [Ex–Ey]移的计算会变复杂！ 浮点乘除运算涉及之。

问题：对IEEE754 SP格式来说， |∆E|大于多少时，结果就等于阶大的那
个数（即小数被大数吃掉） ？

1.xx…x → 0.00…01xx…x(右移24位后，尾数变为0)
24！



求阶码的和、差（浮点数乘除法中使用）

设E1和E2分别是两个操作数的阶码（移码），Ex和Ey是对应指数

Eb是结果的阶码（移码），则：

• 阶码加法公式为： Eb ← E1+E2+129 （ mod 28）

[Ex+Ey]移 = 127 + Ex+ Ey = 127 + Ex + 127 + Ey –127

= [Ex]移 + [Ey]移 –127 

= [Ex]移 + [Ey]移 +[–127] 补
= [Ex]移 + [Ey]移 +10000001B（ mod 28）

• 阶码减法公式为： Eb ← E1+[–E2]补+127 （ mod 28）

[Ex– Ey]移 = 127 + Ex– Ey = 127+Ex–(127+Ey)+127

= [Ex]移–[Ey]移 +127     

= [Ex]移+[–[Ey]移]补+01111111B（ mod 28）

把E2按位取反，末尾加1



浮点数加减法基本要点（1）
（规格化数） 

Xm、Ym分别是X和Y的尾数， Xe和Ye 分别是X和Y的阶码

(1)求阶差：∆e=Ye – Xe  (假设Ye > Xe)

(2) 对阶：将Xm右移∆e位，尾数变为 Xm*2Xe-Ye

   

(3)  尾数加减： Xm*2Xe-Ye ± Ym

如果参与运算的有规格化数和非规格化数
，对阶计算还需修改

求[ΔE]补 此时，和(差)的初始阶码为Ye

隐含位右移到数值部分，高位补0
保留移出低位部分（附加位）

隐藏位还原后，按原码进行加减运算，附加位一起运算



浮点数加减法基本要点（2）
（规格化数） 

(4) 规格化：

当尾数高位为0，则需左规：尾数左移一次，阶码减1，直到MSB为1或
阶码为00000000（-126，非规格化数）
每次阶码减1后要判断阶码是否下溢（比最小可表示的阶码还要小）

      当尾数最高位有进位，需右规：尾数右移一次，阶码加1，直到MSB为1
每次阶码加1后要判断阶码是否上溢（比最大可表示的阶码还要大）

± 0.0…01x…x 形式

±1x .xx……x 形式

注意：IEEE 754 加减运算右规时最多只需一次

——  即使是两个最大的尾数相加，得到的和的尾数最多是11.xxx



浮点数加减法基本要点（3）
（规格化数） 

(5)如果尾数比规定位数长（有附加位），则需考虑舍入
（有多种舍入方式）如果“入”导致需要右规，则也要在右
规前后判断阶码是否上溢。

(6)若运算结果尾数是0，则需要将阶码也置0。为什么？

尾数为0说明结果应该为0（阶码和尾数为全0）。

阶码上溢（全1 ），则结果溢出（无穷大）

阶码下溢到无法用非规格化数表示，则结果为0

若尾数为全0，则下溢，结果为0

（左规、右规、舍入时都需要判断溢出与否）



已知x=0.5, y=-0.4375, 求x+y=? (用IEEE754标准单精度格式计算)
解:  x=0.5=1/2=(0.100...0)2=(1.00...0)2x2-1 
    [x]浮=0     01111110,   000…0
       y=-0.4325=(-0.01110...0)2=(-1.110..0)2x2-2

          [y]浮=1     01111101,    110…0
对阶: ΔE= [x]阶 - [y]阶 =1，结果的初始指数为-1（较大的那个）

    故对y进行对阶：[y]尾=0.1110…0 00(隐藏位右移,最后增加附加位)
[y]阶从 0111 11010111 1110

尾数相加：01.0000...0 
                    + 10.1110...0 00 = 00.00100…0 00
左规三次： +(0.00100…0 00)2x2-1=+(1.00…000)2x2-4  

              [x+y]浮=0    01111011(-4+127)      00…0(去除隐藏位)     
x+y=(1.0)2x2-4=1/16=0.0625      

IEEE 754 浮点数加法运算举例

(原码加法，最左边一位为符号位，符号位分开处理)

(阶码减3，实际上是加了
三次11111111) 

问题：尾数加法器应该是多少位？
考虑符号位、隐藏位、附加位，以
及23位尾数



Extra Bits(附加位)
加多少附加位才合适？

IEEE754规定: 中间结果须在右边加2个附加位 （guard & 
round）

  Guard (保护位)：在尾数最右边的位
Round (舍入位)：在保护位右边的位

附加位的作用：
 用以保护对阶时右移的位或运算的中间结果。
附加位的处理： 
 ①左规时被移到尾数中; ② 作为舍入的依据。

无法给出准确的答案！



IEEE 754的舍入方式的说明

IEEE 754的舍入方式

( Z1和Z2分别是结果Z的最近的可表示的左、右两个数 )

(1) 就近舍入：舍入为最近可表示的数

非中间值：0舍1入；

       中间值：强迫结果为偶数-慢

(2) 朝+∞方向舍入:舍入为Z2(正向舍入)

(3) 朝-∞方向舍入:舍入为Z1(负向舍入)

(4) 朝0方向舍入：截去。正数：取Z1;  负数：取Z2
        

00 ZZ1 Z2

例如：附加位为
01：舍
11：入
10：(强迫结果为偶数)

例：1.110111 → 1.1110;    1.110101 → 1.1101;    
        1.110110 → 1.1110;    1.111110 → 10.0000; 



舍入位和粘位的作用

IEEE 754通过在舍入位后再引入“粘位sticky bit”增强精度

加减运算对阶过程中，若阶码较小的数的尾数右移时，舍入位之

后有非0数，则可设置sticky bit。
举例：

1.110 x 25 + 1.010 x 21 分别采用二位、三位附加位时，结果各

是多少？（就近舍入到偶数）

尾数精确结果为1.110101, 所以分别为：

1.110，1.111（误差较小）



原码加/减运算

 用于浮点数尾数运算
 符号位和数值部分分开处理
 仅对数值部分进行加减运算，符号位起判断和控制作用
 规则如下：

• 比较两数符号，对加法实行“同号求和，异号求差”，对减法实行
“异号求和，同号求差”。

• 求和：数值位相加，和的符号取被加数（被减数）的符号。若最高
位产生进位，则结果溢出。

• 求差：被加数（被减数）加上加数（减数）的补码。
a) 最高数值位产生进位表明加法结果为正，所得数值位正确。
b) 最高数值位没产生进位表明加法结果为负，得到的是数值位的补

码形式，需对结果求补，还原为绝对值形式的数值位。
• 差的符号位：a)情况下，符号位取被加数（被减数）的符号；

b)情况下，符号位为被加数（被减数）的符号取反。



原码加/减运算
例1：已知 [X]原 = 1.0011，[Y]原 = 1.1010，要求计算[X+Y]原

解：由原码加减运算规则知：同号相加，则求和，和的符号同被加数符号。
和的数值位为：0011 + 1010 = 1101  （ALU中无符号数相加）

和的符号位为：1
[X+Y]原 = 1.1101

例2 ：已知 [X]原 = 1.0011，[Y]原 = 1.1010，要求计算[X–Y]原

解：由原码加减运算规则知：同号相减，则求差（补码减法）
差的数值位为：0011+(1010)求补 = 0011 + 0110 = 1001
最高数值位没有产生进位，表明加法结果为负，需对1001求补，还
原为绝对值形式的数值位。即：(1001)补= 0111
差的符号位为[X]原的符号位取反，即：0

[X–Y]原 = 0.0111

思考：如何设计一个基于加法器的原码加/减法器？

求差：加补码，不会溢出，符号分情况



浮点加/减法器Sx

右 移

Ex Mx Sy Ey My

小ALU

大ALU

阶码相减

左移 或 右移

舍 入

阶 差

控制逻辑

Sb Eb Mb

阶小的数的
尾数右移

尾数加/减

规格化

舍入

阶码增/减

②

①
③

④

⑦
⑥

⑧

⑨

⑤

可用流水线方式实现！

但仍然比整数运算更耗时！



浮点数乘/除法基本要点
浮点数乘法：A*B =(Ma * Mb).2 Ea+Eb

浮点数除法：A/B =(Ma / Mb).2 Ea-Eb

浮点数乘 / 除法步骤
（Xm、Ym分别是X和Y尾数原码， Xe和Ye 分别是X和Y阶移码 ）
(1) 求阶： Xe + Ye +  127  
(2) 尾数相乘除： Xm */Ym   （两个形为1.xxx的数相乘/除）
(3)  两数符号相同，结果为正；两数符号相异，结果为负；
(4)  当尾数高位为0，需左规；当尾数最高位有进位，需右规。
(5)  如果尾数比规定的长，则需考虑舍入。
(6) 若尾数是0，则需要将阶码也置0。
(7) 阶码溢出判断

原码乘/除

问题1：IEEE754浮点数乘法运算结果最多左规
几次？最多右规几次？ 不需左规！最多右规1次！
问题2：除法呢？ 左规次数不定！不需右规！

X的平方不会是负数！

如果是其它浮点数编码，可能需要右规
：0.11110000/0.1000=+1.1110



浮点数乘除法结果溢出判断

以下情况下，可能会导致阶码溢出（续）
• 乘法运算求阶码的和时

- 若Ex和Ey最高位皆1，而Eb最高位是0或Eb为全1，则阶码上溢
- 若Ex和Ey最高位皆0，而Eb最高位是1或Eb为全0，则阶码下溢

• 除法运算求阶码的差时
- 若Ex的最高位是1，Ey的最高位是0，Eb的最高位是0或Eb为全1，

则阶码上溢。
- 若Ex的最高位是0，Ey的最高位是1，Eb的最高位是1或Eb为全0，

则阶码下溢。



溢出判断（续）

以下情况也要判断阶码是否溢出

•左规（阶码 - 1）时 

- 左规（- 1）时：先判断阶码是否为全0，若是，则直接
置阶码下溢；否则，阶码减1后判断阶码是否为全0，若
是，则阶码下溢。

•右规（阶码 +1）时（包括：舍入的“入”导致需要右规）

- 右规（+ 1）时，先判断阶码是否为全1，若是，则直接
置阶码上溢；否则，阶码加1后判断阶码是否为全1，若
是，则阶码上溢。

问题：机器内部如何减1？ +[-1]补 = + 11…1 

比整数运算更耗时！



浮点数除0的问题

为什么整数除0会发生异常？
为什么浮点数除0不会出现异常？

这是网上的一个帖子

浮点运算中，一个有限数除以0，
结果为正无穷大（负无穷大）



C语言中的浮点数类型

C语言中有float和double类型，分别对应IEEE 754单精度浮点数
格式和双精度浮点数格式

 long double类型的长度和格式随编译器和处理器类型的不同而有
所不同，IA-32中是80位扩展精度格式

从int转换为float时，不会发生溢出，但可能有数据被舍入

从int或 float转换为double时，因为double的有效位数更多，故
能保留精确值

从double转换为float和int时，可能发生溢出，此外，由于有效
位数变少，故可能被舍入

从float 或double转换为int时，因为int没有小数部分，所以数据
可能会向0方向被截断



回顾：IEEE 754表示的一些问题

 表数范围?
单精度可表示最大正数: +1.11…1X 2127 

双精度呢?

 数据转换时可能发生的问题？i是32位补码，f是float，d是double
     i 和 (int) ((float) i) )
 i 和 (int) ((double) i) )  
  f 和 (float) ((int) f) )  
 d 和 (double) ((int) d) )

 FP参与加法时的不同计算顺序可能带来的问题？

     x = – 1.5 x 1038,   y = 1.5 x 1038,    z = 1.0
        (x+y)+z = (–1.5x1038+1.5x1038 ) +1.0 = 1.0
        x+(y+z) = –1.5x1038+ (1.5x1038+1.0) = 0.0

不一定相等

相等

不一定相等

不一定相等

约 +3.4 X 1038

约 +1.8 X 10308



举例：Ariana火箭爆炸

1996年6月4日，Ariana 5火箭初次航行，在发射仅仅37秒钟后，
偏离了飞行路线，然后解体爆炸，火箭上载有价值5亿美元的通信
卫星。

原因是在将一个64位浮点数转换为16位带符号整数时，产生了溢
出异常。溢出的值是火箭的水平速率，这比原来的Ariana 4火箭所
能达到的速率高出了5倍。在设计Ariana 4火箭软件时，设计者确
认水平速率决不会超出一个16位的整数，但在设计Ariana 5时，
他们没有重新检查这部分，而是直接使用了原来的设计。

在不同数据类型之间转换时，往往隐藏着一些不容易被察觉的错误
，这种错误有时会带来重大损失，因此，编程时要非常小心。

最大约 +1.8 X 10308 最大32767



举例：爱国者导弹定位错误

 1991年2月25日，海湾战争中，美国在沙特阿拉伯达摩地区设置的爱国者导
弹拦截伊拉克的飞毛腿导弹失败，致使飞毛腿导弹击中了一个美军军营，杀
死了美军28名士兵。其原因是由于爱国者导弹系统时钟内的一个软件错误造
成的，引起这个软件错误的原因是浮点数的精度问题。

爱国者导弹系统中有一内置时钟，用计数器实现，每隔0.1秒计数一次。程序
用0.1(表示为24位定点二进制小数x）来乘以计数值作为以秒为单位的时间

这个x的机器数是多少呢？

 0.1的二进制表示是一个无限循环序列：0.00011[0011]…，x=0.000 1100 
1100 1100 1100 1100B。显然，x取24位后，和0.1之间的误差为：

     = 0.000 1100 1100 1100 1100 1100 [1100]… - 

        0.000 1100 1100 1100 1100 1100B，即为：

     =0.000 0000 0000 0000 0000 0000 1100 [1100]…B

     =2-20×0.1 ≈ 9.54×10-8 这就是机器值与真值之间的误差！



举例：爱国者导弹定位错误

已知在爱国者导弹准备拦截飞毛腿导弹之前，已经连续工作了100
小时，相当于计数了100×60×60×10=36×105次，

 因而导弹的时钟已经偏差了9.54×10-8×36×105 ≈ 0.343秒

 飞毛腿的速度大约为2000米/秒，则由于时钟计算误差而导致的距
离误差是2000×0.343秒 ≈ 687米

小故事：实际上，以色列方面已经发现了这个问题并于1991年2月11日知会了美国
陆军及爱国者计划办公室（软件制造商）。以色列方面建议重新启动爱国者系统的
电脑作为暂时解决方案，可是美国陆军方面却不知道每次需要间隔多少时间重新启
动系统一次。1991年2月16日，制造商向美国陆军提供了更新软件，但这个软件最
终却在飞毛腿导弹击中军营后的一天才运抵部队。



举例：爱国者导弹定位错误

若x用float型表示，0.1= 0.0 0011[0011]B=+1.1 0011 0011 
0011 0011 0011 00B×2-4， （比前面多保留了一组“1100”，
因为规格化带来的好处）

• 故x的机器数为0 011 1101 1 100 1100 1100 1100 1100 1100

0.1与x的偏差是|x–0.1|= 0.000 0000 0000 0000 0000 0000 
0000 1100 [1100]…B= 2-24×0.1 ≈ 5.96×10-9 。

系统运行100小时后的时钟偏差是5.96×10-9×36×105 ≈ 0.0215秒

在飞毛腿速度为2000米/秒的情况下，预测的距离偏差为
0.0215×2000≈43米。比爱国者导弹系统精确约16倍。

如果用double呢？



总结：浮点数运算的精度问题

 程序员应对底层机器级数据的表示和运算有深刻理解

 计算机世界里，经常是“差之毫厘，失之千里”，需要细心再细
心，精确再精确

 不能遇到小数就用浮点数表示，有些情况下（如需要将一个整数
变量乘以一个确定的小数常量），可先用一个确定的定点整数与
整数变量相乘，然后再通过移位运算来确定小数点



第三讲小结
 浮点数的表示（IEEE754标准）

• 单精度SP（float）和双精度DP（double）
- 规格化数(SP)：阶码1~254，尾数最高位隐含为1
- 0(阶为全0，尾为全0)
- ∞(阶为全1，尾为全0)
- NaN(阶为全0，尾为非0)
- 非规数(阶为全1，尾为非0)

 浮点数加减运算
• 对阶、尾数加减、规格化（上溢/下溢处理）、舍入

 浮点数乘除运算
• 求阶、尾数乘除、规格化（上溢/下溢处理） 、舍入

 浮点数的精度问题
• 中间结果加保护位、舍入位（和粘位）
• 最终进行舍入（有四种舍入方式）

- 就近（中间值强迫为偶数）、+ ∞方向、- ∞方向、0方向
- 默认为“就近”舍入方式



本章总结（1）
定点数运算：由ALU + 移位器实现各种定点运算

 移位运算

• 逻辑移位：对无符号数进行，左（右）边补0，低（高）位移出

• 算术移位：对带符号整数进行，移位前后符号位不变，编码不同，方式不同。

• 循环移位：最左（右）边位移到最低（高）位，其他位左（右）移一位。

 扩展运算

• 零扩展：对无符号整数进行高位补0
• 符号扩展：对补码整数在高位直接补符

 加减运算

• 补码加/减运算：用于整数加/减运算。符号位和数值位一起运算，减法用加法实现
。同号相加时，若结果的符号不同于加数的符号，则会发生溢出。

• 原码加/减运算：用于浮点数尾数加/减运算。符号位和数值位分开运算，同号相加
，异号相减；加法直接加；减法用加负数补码实现。

 乘法运算：用加法和右移实现。

• 补码乘法：用于整数乘法运算。符号位和数值位一起运算。采用Booth算法。

• 原码乘法：用于浮点数尾数乘法运算。符号位和数值位分开运算。数值部分用无符
号数乘法实现。

 除法运算：用加/减法和左移实现。

• 补码除法：用于整数除法运算。符号位和数值位一起运算。

• 原码除法：用于浮点数尾数除法运算。符号位和数值位分开运算。数值部分用无符
号数除法实现。



本章总结（2）
 浮点数运算：由多个ALU + 移位器实现

• 加减运算

- 对阶 、尾数相加减、规格化处理、舍入、判断溢出

• 乘除运算

- 尾数用定点原码乘/除运算实现，阶码用定点数加/减运算实现。

• 溢出判断

- 当结果发生阶码上溢时，结果发生溢出，发生阶码下溢时，结果为0。
• 精确表示运算结果

- 中间结果增设保护位、舍入位、粘位

- 最终结果舍入方式：就近舍入 / 正向舍入 / 负向舍入 / 截去四种方式。

 ALU的实现

• 算术逻辑单元ALU：实现基本的加减运算和逻辑运算。

• 加法运算是所有定点和浮点运算（加/减/乘/除）的基础，加法速度至关重要

• 进位方式是影响加法速度的重要因素

• 并行进位方式能加快加法速度

• 通过“进位生成”和“进位传递”函数来使各进位独立、并行产生

 作业：习题3、4、5、6、7、11（4）(11月2号晚上24:00之前交)


